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A model of a hydrodynamic oscillation damper is proposed. The model isused 
to obtain the equations describing longi~d~al oscillations of a structure which 
includes a shell partially filled with fluid, and contains a hydrodyna~c damp- 
er. It is shown that the use of the damper leads to considerable increase in 

the damping of the oscillations of specified frequencies within the structure. 
In modem technology one encounters various types of problems connected 

with restricting the amplitudes of the axisymmetric vibrations of shells and of 
the longitudinal oscillations of structures consisting of shells partially filled 

with fluid, Various devices have been proposed [l] for solving these problems. 
All these devices have a common feature, namely an elastic shell filled with 
gas and placed in the fluid. The natural frequency of oscillations of such a 
shell in a fluid can be tuned to required frequency. The effect of such a de- 

vice is analogous to the effect of a dynamic vibration damper in mechanical 

systems [Z]. A part of the fluid contained in the shell serves as the active mass 
of the dynamic damper, and for this reason we shall call such devices the 

hydrodynamic vibration dampers. 

l. Formulation of the problem. Letusconsideramodelofa 
hydrodynamic damper in which the shell consisti of a bellows with a rigid lid at each 

end (Fig. 1). The lower lid is joined to the reference frame by means of sufficiently 
stiff rods, and the upper lid is movable. A damper with viscous friction is placed in 

the gas cavity thus formed. 
We shall study the influence of the hydrodynamic damper on the axisymmetric 

oscillations of the shell partially filled with fluid, and on the simultaneous longitudin- 
al oscillations of the construction housing and the axisymmetric, lon~~dinal-trans- 

verse oscillations of the shell with fluid. The latter problem will be solved for an 
axisymmetric elastic construction a part of which consists of a shell partially filled 
with fluid containing within it a hydrodynamic damper. We shall model our computa- 

tions on the elastic rod with attached oscillators [33. 

We introduce the following assumptions. The fluid is perfect and incompressible. 

Generation of waves on the free surface and the change in the hydrostatic pressure 
caused by the deformation of the shell can both be neglected. The unperturbed free 

surface of the fluid is perpendicular to the longitudinal Ox-axis, and the axis points 

in the direction opposite to that of the mass force field vector. The reference frame 

of the shell is perfectly rigid. 
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Fig. 1 

2. Equations of oscillations of 
the shell with a hydrodynamic 

damper. We denote the displacement of the shell 
frame along the Ox-axis by u (t), and the deviation 

of the upper lid of the bellows from its position of eq- 

uilibrium by 5 (t). The equations of natural oscil- 
lations of the shell at 5 = 0 have the form [3] 

(mo + M) n” +njI &&;; = 0 (2.1) 

f-%&o (%” -I- %*2%J + &OU” = 0 

(n = 1, . . . , 5-3) 

where nas and m denote the mass of the shell and fluid, respectively. &,o and 
pno are the apparent additional masses of fluid, W,O are the partial frequencies 

of the axisymmetric oscillations of the shell with a fluid and n is the number of the 
oscillation mode. We can adopt, as the generalized coordinates U, , the fictitious 
displacements of the free surface of the fluid when the shell is in fts n-th order oscil- 
lations, with the reference frame rigidly clamped. 

Let us put a certain Lagrangian function Lo = To - II, in one-to-one cor- 
respondence with the equations (2.1). We write the Lagrangian function of a shell 
with a hydrodynamic damper in the form I, = Lo -I- L, and find L,. Let us 
introduce the fluid displacement potential 

x = x0 -I- I;v, x0 = ux + 5 ~,% (2.2) 
n=1 

The functions @, and v are harmonic and satisfy the boundary conditions 

CD, = 0 on 2, a@,lav = W, o~ S, am,lav = 0 on So + S1 
V = 0 0n2, aV/dv = 1 on S,, avfav = 0 on S + So 

where S and 2 denote the surface of the shell and the free surface of the fluid, 8, 
and So denote the surface of the upper lid of the bellows and the fixed surface of 

the damper, Y is the unit vector of the outer normal to the surface enclosing the 

volume Z occupied by the fluid, and w,, are the partial forms of the oscillations of 

the shell partially filled with fluid. 
Let us write the expressions for the kinetic and potential energy of the mechanical 

system in question 

Here p and c denote the fluid density and rigidity of the damper. Taking into 
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account (2. Z), we find 
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(2.3) 

b = p f (VV)2dz, ~0 = p l VxVVdz, ho = p 1 V~V~*d~ 
T t ? 

We note that [S] 

Taking into account (2. I), we can write the Lagrange’s equations in the form 

j&.&o (Un” + on&,) + h,ou” + &&y = 0 (n = 1, . . . , 03) 

where the inherent mass of the damper is neglected. 
When 0i< oloI putting in (2.4) U, = 0 yields the equations of motion 

of a rigid shell with a hydrodynamic damper. The equations enable us to bring in a 
simple mechanical analog including the main mass j@ = ms + m - m, and the 
auxilliary mass m, = eo21b connected to n/r by means of a spring with rigidity 

of c1 = mo2/b2. We shall show below that the efficiency of the damper depends 
on the magnitude of m,. 

Let us estimate ml for a cylindrical shell with a hollow bottom. We introduce 
a cylindrical On8 -coordinate system with the origin at the center of the top of 
the bellows lid. We formulate the boundary value problem for the potential v in 
the following approximate form: 

(2.5) 

dVf&=O, r-R; 770, X=H 

av I 1, x=0, O,<r<r0 
-cr.3 

dX 0, x=0, ro<r\<R 

where H is the height of the column of fluid above the bellows, R is the radius of 
the shell and r,, the radius of the bellows. 

Using the Fourier method of separating the variables in (2.5)‘ we obtain 

JJ (z, r) - tz $1 Q2 $- 2R C RtnaJo2 (4n) 

- roJ1 (f&R) sh [‘in (z--.WW J Enb 
ch (C&)/R) ’ x ( ) 

?a=1 
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where JO and J, are Bessel functions of the first kind, of the zero and first order, 
and &, are the roots of the equation J, (5) = 0. Applying to (2.3) the Green’s 
formula and taking into account the boundary conditions (2.5), we obtain 

Fig. 2 shows the results of the computations. The curves 1 and 2 depict the de - 
pendence of the dimensionless associated masses & (r@ / R) = m, / (~pR3) and -i; fro / 
Rf = b f (npRs) for H i R = 2 and Hi R = 3, respectivelyy. We see that the 
mass ml represents a considerable proportion of the total mass of fluid in the shell in 
the case when the hydrodynamic damper is relatively small, the latter fact governed 
by the smallness of the associated mass b. This fact is of considerable importance 
in the application of the hydrodynamic damper, 

0.8 r,lR 

Fig. 2 

3. Equation8 of longitudinal oscillations of a 
ittucture with a hydrodynamfc damper. We denote the 

length of the structure by E, the running mass without fluid by 1-1 (z) and the 

compressive (tensile) stiffness by E8’ (z) , We assume that the reference frame of 
the lower lid of the shell is situated in the plane z = ~1. The natural forms Q 

and frequencies aj of the simultaneous longitudinal oscillations of the free construc- 

tion regarded as a rod, and of the axisymmetric buckling oscillations of the shell with 
a fluid at 5 = 0 ,can be found by solving the problem [3] 

where m,,@ are the masses of the oscillators equivalent to the shell containing a 
fluid and 6 (5 - r$ is the Heaviside function. The conditions of or~ogonal~ty of 

the natural forms of oscillation have the form 
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rli(Xd OD 
CD 

c %&ii + c mn&k!~j = 0 (i # j) 
n=l n=1 

(I 

gnj = gnj - rlj (xl)r gnj = 40 
a _ Q ,a % (xl) 

@no 3 

(3.1) 

(3.2) 

Let us expand the longitudinal displacements of the body of the structure into a 
series 

n (27 r) = j % (r> 71j 

and use the coefficients qj as generalized coordinates of the system structure-hydro- 
dynamic damper. The fluid displacements potential in the shell with a damper can 
be written in the form 

(3.3) 

When the motion of the reference frame of the shell is given, the equations (2,4),with 
5 = 0 and (3.2) taken into account, give 

(3.4) 

Substituting (3.4) into (3.3) we obtain 

3=1 

(3.5) 

Let US write the expression for the kinetic energy of the structure with a hydro- 
dynamic damper 

F=+ip [~~j~jJ~~~+~~s(~~~dr 

0 j=l z 

Substituting into this expression the displacement potential (3.5) and using the con- 
ditions of octhogonality (3. l), we obtain 

T=+ (3.6) 

j=r j=l 
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Using the orthogonality conditions (3.1) we can reduce the expression for the potential 
energy of the structure to the form 

I’I = + c a+rj2qj2 + f bco52~2 
j=l 

and now we can write the Lagrange’s equation 

aj(qj”+aj2qj)+&jj”=Qj (j=f,*-.,m) 

in which the generalized forces Qj can be found in the usual manner, 

The form in which the equations of motion are given, is the most suitable one for 
investigating the influence of the hydrodynamic damper on the dynamic properties of 
the structure, Generalization to the case of a structure with any number of shells and 
hydrodynamic dampers presents no difficulties. 

4. Analysis of the effectiveness of the hydro- 
dynamic vibration damper, Considering the first of the problems 
formulated above we note, that the most important aim is to reduce the amplitude of 
the oscillations of the shell at the frequency of the first mode, since the main bulk 
of the oscillating fluid mass corresponds to this mode. The damper should therefore 
be tuned to this oscillation frequency. 

Let us consider the energy dissipated in the damper. We neglect the scattering 
of the energy in the shell and fluid, and the influence of the higher order modes.From 
(2.4) we obtain the equations of motion of the shell when the reference frame moves 

according to the law u. (t) = Uoeiof 

where g is the relative damping coefficient of the damper. 

Using the properties of the invariant points of the resonance curves [Z] we obtain, 
for the system t4. I), the following conditions of the best tuning of the damper in 
terms of the acceleration: 

Or2 
b_ =.: I_%, WlO 
%2 

a=- 
b&o 

If in addition we choose the optimal damping in the damper, then we obtain the 

following expression for the maximum amplitudes of the shell resonance curve in 
terms of the acceleration: 

In the absence of hydrodyna~c damper, such resonance amplitude of the acceler- 
ations is obtained when the relative damping coefficient of the oscillations of the 
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shell with fluid, for the first mode, is 

g10 = 
V’(Z-a) X-X 

Z-a-V(2--u)x 
(4.2) 

It can be shown that for the cy~ndrical shells with hollow bottoms we have a sz 
x z=:m,/m. Clearly, it is very easy to ensure that e.g. CL = x = 0.25, for which 
we obtain g10 = 0.39. We note, for the purposes of comparison, that the relative 
damping coefficients of the shells with fluid are, as a rule, much smaller than 0.01 

[3]. It follows that use of the hydrodynamic damper with optimal parameters makes 

it possible to increase the damping of the shell relative to the first mode of oscillation 

by tens of times. 
Let us consider the second problem. Let the damper be tuned to the frequency 

of the j -th tone of longitudinal oscillations of the structure. We write the corres- 
ponding equations of oscillations in the form 

Uj (qj" + (3jaqj) + Ej5" r= Qj, b (C" + gW5' + mL25) +EjQi" = O 

The damping in the structure is neglected for simplicity. 
The conditions of optimal tuning of the damper and the expression for the small- 

est resonance amplitudes of accelerations of the structure possible under the optimal 
damping, have the form 

Of -1, Q”=:-2- 
Q. 2--1/2xj Eja 

‘j 
j* "j 1’2xj-%j ’ 

xj = z 
j 

The effectiveness of the hydrodynamic damper is determined by the magnitude of the 
parameter 3cj. . For cylindrical shells with hollow bottoms we have [3] 

mlO=I:m, mn0lrn<1 (n--2, -. -, CQ) (4.3) 

If (4.3) holds, then 

From this we conclude, taking into account (3.2) and (3.6), that the hydrodynam- 

ic damper should preferably be set up in a shell the partial frequency 010 of the 
lower mode of which is nearly equal to the frequency Oj of the longitudinal oscil- 

lations of the structure, In this case we have 

(4.4) 

We see from (4.4) that Xj can assume relatively largevalues. For example, for a 
structure consisting of six shells filled with fluid we can ensure that rn,qj” (zl) / aj = 

0.02 and even when 0,,2 = 2oja, S we have xi = 0.08. 
Similarly to (4.2), we can introduce a relative damping coefficient of the struc- 

ture with respect to the i -th mode, equivalent to the effect of the damper 

.t/2xj_Xj 

gj = 2--1/2x3 
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When xi = 0.08 , we have gj = 0.2. For thin-walled structures containing large 
masses of fluid, the values of the relative damping coefficients fall, as a rule, with- 
in the range 0. 01 - 0.05 [S]. The hydrodynamic damper may be used to remove a 
dynamic instability of the longitudinal oscillations of such structures, 

The author thanks G. N. Mikishev for formulating the problem. 
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